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1. INTRODUCTION

This report describes progress made in during the second year of study on the project entitled “Model & Expansion
Based Methods of Detection of Small Masses in Radiographs of Dense Breasts.” Our end goal is to develop technology
for computer aided diagnosis that can detect masses in dense mammograms having a diameter less than 1 cm. The basic
“idea” of this IDEA category award is to detect subtle masses by tuning the central frequency and width of a basis
function. By modeling the shape of a mass through this flexibility (i.e., changing the shape of the “bump™) we hope to
better detect small and subtle masses in dense breasts and improve the chances of early detection through screening
mammography.

This annual report of our second year continues progress made towards accomplishing the goals described in Tasks 1a
and 1b, “Feasibility assessment and design of model based method.” In addition we have begun work towards building a
detector as described in in Task 2b, “Detector analysis and implementation.”

During the past year we have focused on an interesting family of functions that are well suited to the problems of mass
detection: fractional B-splines are an extension of the B-spline functions. In this report, we study the influence of the
spline parameter in the analysis of mammograms and we describe experiments carried with aim of identifying
parameters most efficient in characterizing the masses in dense breasts.

Recall that in our previous report, we observed that masses within mammograms are represented low frequency signals..
Thus the analyzing functions we use should to be smooth in terms of shape and can, for instance be first or second
derivative functions. The fractional spline family is exactly what we want since it has one continuously varying order
parameter. Thus, one can tune the central frequency of a wavelet that will be efficient in the detection of masses of
arbitrary size.

2. BODY

It has been shown that the dyadic transform is not sufficient for the case of mass detection [1]. Thus we have constructed
a 2D-continuous discrete transform, using the “A trou Algorithm” in which we incorporated the fractional spline
wavelet. In addition, we will report on 2 component of a detector algorithm which uses a dictionary of bases computed
from Wavelet Packets. Our goal related to Task 2, was to find an “average” best basis according to minimizing a
criterion of energy within a wavelet packet expansion.

In this report, we have processed numerous Regions of Interest (ROI) to allow us to compute this average best basis and
extract some specific features for the detection of small masses.

Design and Methods

The 2D fractional B spline Wavelet Transform

The B spline functions

Splines [2] are piecewise polynomials that are smoothly connected together. The joining points of the polynomials are
called knots. For a spline of degree n, each segment is a polynomial of degree n, which suggests that we need (n+1)
coefficients to describe each piece. However, there is additional smoothness constrain that imposes continuity on the
spline and its derivatives up to order (n-1) at the knots, so that, effectively, there is one degree of freedom per segment.
Here, we will only consider splines with uniform knots and units spacing. The remarkable result is that these functions
are uniquely characterized in terms of B-spline expansions:

s(x) =Y c(k)B"(x~k) 0.1

keZ




which involve integer shifts of the B-spline of degree n denoted by f" ; the parameters are the B-spline coefficients
c(k). B-splines, defined below are bell-shaped and constructed from the (n+1) fold convolution of a rectangular pulse

,3 0 (centered):

B’(x)=1, -%<x<% ©0.2)
i1 1
= ==
2 2
|0,  otherwise

The fractional B-spline functions [2,3]
We can extend B-Spline to all fractional degrees & > — % . These splines are constructed using linear combinations of

. . . . o .
the integer shifts of the power functions xf (one-sided) or le* (symmetric):

(74
x“ x20
xZ {

+

0, otherwise

N
— a=2n+1
2sinl &
o = Sln(Za]
x*"log x
e

In each case they are a-Holder continuous for & > (. They satisfy most of the properties of the traditional B-splines, as
described below. In particular the Riesz basis condition and the 2-scale relation, which make them suitable for the
construction of a new families of wavelet bases.

Definition and notation

Euler’s gamma function is defined as:
+4oo
Tu+1)= [ x"e™dx 0.3)

In particular, I'(z1+1) = n!. This suggests the following generalization of the Binomial coefficients
u IF'u+1)
= 0.4)
v IFr'v+Hru-v+1)

u
In particular, this definition implies that (k) =(0when k is a strictly negative integer. Moreover, for # >0, we have

k

The differentiation operator can be extended to non-integer exponents rather simply in the Fourier Domain:

Uu
the well-known binomial theorem: (l + z)u = 2:0[ )zk .




D’ f(x) & (jw)* fA' (w) where f(a)) =If(x)e_ijdx denotes the Fourier Transform of f(x) and where

2% =|2f" &”**® with j=+—1 and arg(z)€ [-7 7]. This is equivalent to Liouville’s definition of fractional

derivative operator.
The forward fractional finite difference operator of order o. is defined as

Al f(x)= i(—l)" (Z)f (x-k).  (05)
k=0

It is a convolution operator which has a more straightforward interpretation in the Fourier domain
y ~ ay\
AX(@)=(1-€e) =Y (D e e
k=0 k
The natural building blocks for the fractional splines are the one-sided power functions xf , which have precisely one
singularity of order o, (Holder exponent) at the origin. Their Fourier transform is I'(&x +1) /( ja))"“ .

. et .
Similar formulae exist for the symmetric functions whose Fourier transform is I'(cx+1)/ | ]a)l . However, in our

study, we only consider the one-sided functions.

Fractional B-splines

We consider here the causal fractional B-splines. By analogy with the classical B-spline we define the fractional B-spline
by taking the (CZ + l)th fractional difference of the one-sided power function

o _Afxf_ 1 +°°_ka+1 a

1
These functions are L, for & > —5. While they seem to be decaying reasonably rapidly, they are not compactly

supported unless o is an integer, in which case we recover the classical B-splines. In general, they do not have an axis of
symmetry either. The fractional causal B-splines satisfy the convolution property

Bl = p = g, 0.8)

The properties of fractional splines
The Fourier transform of the causal fractional B-splines are given by
. oN\at
A 1-¢™
Bl (w)= (—-—-— . 0.9)
Jj

This equation is indeed compatible with the convolution property.
Fractional derivatives and regularity

One of the primary reasons for the success of polynomial splines in image and signal processing applications is that they
can be differentiated very simply by taking finite differences. This property generalizes nicely to the fractional case:

D" Bf (x)=AL BT (x) (0.10)

(The 2 scale relation is described in the next section).

Fractional spline spaces and Riesz bounds

The mathematical space of fractional splines of degree o with knots at the integers is defined as:




¢ ={s(x)=2c(k),3f (x—k):ce lz}.

keZ

Proposition: For a>-1/2 the fractional B spline ﬁf generates a Riesz basis of Sf. Specifically, one has the following
I,-L; norm equivalence

Vce L,, A, "x“lz2 < gc(k)ﬂ“ (x—k) <B, ||x||f2
€ L
2 20042 ) 200+2
Where A, 2(;} and B, <1+2{(20+ 2)(;)

This result ensures that the B-spline representation is stable and that fractional spline spaces are well-defined (closed)
subspaces of L,. Finally, the fractional splines of degree o have a fractional order of approximation o+1.

Definition of the fractional spline wavelet

Let us now show explicitly how to use these B-splines to obtain new wavelet families with a continuously varying order
parameter. We will concentrate on the case of orthogonal wavelet bases. These are obtained by orthogonalization of the
fractional B-splines. The key quantity is the fractional B-spline autocorrelation sequence:

a, (k)= (B2 (x), BE (x=K)) = B*"(k) @D

Where the right hand side expression is a direct consequence of the convolution relations. Moving to the Fourier domain

we get
A (™)=Y | B+ 27rk)|2 =Y B (k)e ™ = AZ(e), (0.12)
keZ keZ
since A% (€)= Y, e B2 (x) B (x+n)dx.

neZ

To compute A¢ (ej‘") we choose to perform an infinite summation in the Fourier domain because of the relatively

convenient expression of ﬂf (@) . And we express the orthogonal scaling function as

B(x) =Y (a,) "2 B2 (x—F). ©0.13)
keZ
The corresponding two-scale relation is

O(x/2) =2 Y by (K)D(x—k) 0.14)

keZ

A (1= "
2 . 019

A, (™) 2

The corresponding orthogonal wavelet filter can then be obtained using Mallat’s method:

Gy(2)=zH,(-z"). (0.16)
An overcomplete representation for signals: the “A trous Algorithme”[3]

and the refinement filter is given by

H,(e")=

We have shown that the fast dyadic transform was not sufficient in the case of small mass detection [1]. However, it is
possible to sample the time-scale space in other ways. The Continuous Discrete Wavelet Transform (CDWT) keeps the
dyadic sampling of scale (Discrete) but provides a quasi-continuous sampling in time (Continuous). It is similar to a fast
biorthogonal wavelet transform, without downsampling in the time domain. In terms of representation, this transform
falls between the large redundancy of the CWT and the strictly non-redundant DWT.



cd,(j,k)=CWT,(a=2",t=k)
cd,(j,2*) = DWT,(j,k)
Proposition: Forany j 20,
. =a.%n,
AL e
where  a; and d ; are the approximation and the detail coefficients of the signal
h,=T27 [h]and g, =T27"[g,] (017

h and g, are respectively the low-pass and high pass filters linked to the wavelet.

init | “ h “ T2k, h T 22h, y 4
&1 T2g 1 T2%¢ 1
cd, cd, cd,

Figure 1. Overview of processing to compute the ‘a trou’ algorithm.

The 2D Continuous Discrete Fractional Spline Wavelet Transform

Implementation
As described above, we used the “a trou Algorithm” to perform this transform. We appled the low-pass and high-pass
filters respectively on the rows and the columns as illustrated in Figure 1. We worked in the Fourier domain: ca, is the

Fourier Transform of the image, the initialization is therefore ensured by the Fourier operation. After the filtering
operations, an inverse Fourier transform is performed to obtain the coefficients in the spatial domain.

Filters /4 and g, are respectively linked to Hyand Gyof (1.15) and (1.16) with Gy(e’”)=e ™ H (~e ). In
H, G

—=h and *==g,.

V2 N

order to have normalized Quadratic Mirror Filters (QMF), we consider




ROWS COL ROWS COL

C a, a
% h h T 2h, Ton > 7

d! d!

8 —>" T 2g, >

d> d>

1 & h > 11 2g T 2h >

d; ] d;

g > T2g, g

Figure 2: Scheme of the overcomplete algorithm, g, : Approximation in the wavelet basis, d,.1 : Horizontal detail

in the wavelet basis, d,.2 : Vertical detail in the wavelet basis, di3 Diagonal detail in the wavelet basis.

Practical considerations:

For the computation {0.6] of the Fourier transforms of the fractional B-splines filters we need to evaluate the
k

autocorrelation filter at v =—, for k =0...N —1. For this we use the Poisson-equivalent expression of (6) i.e.,
n

keZ

N 2
Lo+ 27L'k)l . More precisely, since we must limit this summation to a finite number of terms, we evaluate

Aq, using the following asymptotic equivalent:

. A 2
A¢(e12m') ::Ilz B (27Z(V+n))l +
n|<N
. I (a+1)(1+2v2) , |- (0.18)
sin (77v) 2a+1_ 1 . 3 _ (a+1)(2a+3)v

/3

N2a+1 N2a+2 N2a+3 N2a+4

An accurate analysis of this expression shows indeed that the remainder difference between the lhs and the rhs is
(0] W , which ensures an accuracy that is larger than 200 dB with N=100 computed terms, and for all values
of & >~ 0.5. (The code implementing this is provided in the Appendix of this report.)

Moreover, we use biased coefficients to ensure positive coefficients, and display a gray scale.




fractionnal spline filters:response in frequency

141
__ H:low-pass
___ G high-pass
12F ___ abs(H)?+abs(G)?

Figure 3: Filter design as a function of alpha, for a 128 points signal.

The filters are a quadratic mirror filter, which are very desirable for signal processing - it allows us to use existing tools
that can be applied to such filters. This is also the case for the wavelet packet representation described below, next.

Best basis Search for Detection

The 1D wavelet packet representation

Wavelet packets generalize the link between multiresolution approximations and wavelets. Previously, we noted [5] that
a space Vj of a multiresolution approximation is decomposed in a lower resolution space Vj +1 and a detail space Wj +

by dividing the orthogonal basis of Vj into two new orthogonal basis, one for VJ +1 and the other for Wj p

But here, instead of dividing only the approximation space Vj to construct the detail space W,

4 and a new

approximation space Vj +1» We want also to divide Wj to derive new bases! The following theorem allow us to perform
such divisions:

Theorem : (Coifman, Meyer, Wickerhauser)

Let {Oj (t-2 n)} . be an orthonormal basis of a space U ;. Let h and g be a pair of conjugate mirror filters.
e
Define:

0%, 1) =3 h[nlf,(t~2'n) and 0,0 ="3 glnlf,t—-2'n), the family

{67;)+1 (t-2""n) ,911. LE=2 Hn)}nez is an orthonormal basis of U ; .

10



Suppose our signal is approximated at the scale 2", The corresponding approximation space is V, and admits the
following orthogonal basis: {¢L (t-2"- n)} .

ne
We can easily represent the recursive splitting of vector spaces in a binary tree - V; is the root of the tree, and to each

node (j,p) we associate a detail space ij that admits the following orthonormal basis: {l// J’.’ (t-2/ n)} . At the root,
ne

we have: WLO =V, . For each node, j-L is its depth in the tree and p is the number of nodes that are on its left at the same

depth. Suppose now that we have already constructed ij . The construction of its children ij and ij is given by

the splitting relation of the last theorem:

W)= Y, Hnly? (t-2'n)
. (0.19)
yir =" glnlyl¢-2'n)

And since AW 27 (t =2""n), w27 (t—27"'n) ! is and orthonormal basis of W? we have:
w’“ l// neZ J

jHl
_ 2 2p+
WP =Wk ewe.

Jj+l Jj+l

Following this recipe, we constructed a binary tree of wavelet packet bases. We may choose to divide each node further
(or not) so that we obtain a binary tree where each node has either 0 or 2 children. A tree is called admissible if

at the end of the exspansion: V, = @ijf " where { Jis P }1 << are the leaves of our tree.

The union of the corresponding wavelet packet bases {l// ]’.:" (t—2% n)}nEZ thus defines an orthogonal basis of
1<i<I

W? =V, :itis called a wavelet packet basis.

WC

12 13
WI +4 WL+4

Figure 4: Example of an admissible tree computed from a wavelet packet expansion.
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Best basis search

We implemented the wavelet packet decomposition in two dimensions. We can imagine Figure 4 above with 4 children
per node (one approximation node and three details nodes for each expansion). The search for a best basis uses an
additive criterion described below.

The criterion:

As an early choice in our experiments, we selected the following Entropy additive criteria:

n? 2
Ent = —; p, log,(p,) with p, = ”j;ﬁ’xk = (xi,j )(i,j)e[[l,n]z (0.20)

where X is the image matrix.

Algorithm in 2D:

Initialization: Afr‘:ax = fr':ax,(p,k)e ﬂO,...,ZJmax —1]]2

For j=J_, -1, 0:
P if Ent(ul*) < Ent (A7 )+ Ent (A5 )+ Ent (A377* )+ Ent (A7724)

Ap’k _ J j+1 j+1 j+1 J+1
i 2 .
AJ?fI’Zk @Ajzflﬂ k@ Aj?fl,ZkH @ Ajﬁ+l,2k+l otherwise
J
p=0,..,2" -1

The selected leaves of the tree are the best basis.

The criteria is an entropy-based metric that has been used in application of image compression: Its purpose is to
concentrate in a few coefficients most of the information of an image. In our case, the highest value coefficients can
describe the mass if the wavelets are well adapted for detection (Please see discussion section below).

Implementation notes

We needed to adapt the algorithm of the decomposition of wavelet packets for the end goal of detection. The 2D discrete
decomposition already existed in a Wavelab library. We have modified this available code for our purpose, as described
in the Appendix of this report (cf best basis directory). In particular, as we did not want to downsample coefficients we
needed to preserve normalization of the entropy when we compared the entropies of the father to the children nodes in
the tree. Thus we divided the children’s entropy by a factor of 4.

We also stored the different coefficients of each best basis for reconstruction and visualization purposes.

Thus, we forced the first node to the value 1 in order to allow the program sb_Plot2dpartition.m to decompose the nodes.
This code also provided in the Appendix, under the heading of Best basis directory.

Results

Computation of the 2D Wavelet transform

We computed along the dyadic scales, the CDWT2D for different parameter values of o (please see the subroutine
“simu_alpha_scale.m” in the Appendix for details). The results in terms of detection efficiency, are discussed in the next
section. .First, we choose a range of o values that made sense in terms of detecting masses less than 1cm in diameter.
First we computed an expansion for a phantom image of a mass (Figure 6) with a large amount of Gaussian noise added
(Figure 7). This experimental phantom was used to validate (debug) our algorithm and confirm function.

12



Gaussian noise
V=4

Figure 6: mass model Figure 7: noisy mass
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fractionnal spline filters:response in frequency

__ H:low-pass
L —| ___ G high-pass
09t ___ abs(H)?+abs(G)?
08}
07}¢
BB}
051
04
03f
02}
01
0 e
50 60 70

Figure 10: Filter frequency response for corresponding values of selected .

We tested the transform for the following o values shown in Figures 10 and 11. This range in alpha values
was selected because the filters had smooth slopes, desirable for matching the shape of masses.

fractionnal spline filters:response in frequency

1.4
— H: low-pass
___ G high-pass
12} — abs(H)?+abs(G)?
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Figure 12
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Figure 13: Sample ROI of a barely visible mass.
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Figure 14: CDWT2D of Figure 13, an image matrix size of 64x64.
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Figure 15: ROI Case 02, poor exposure, mass located close to skin surface.
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Figure 16: CDWT2D expansion of case 02.
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Figure 17:ROI case 04, a spicular mass.
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Best basis

search

We applied the best basis search strategy described above, on images extracted from the database of
mammograms available on the University of South Florida website
http://marathon.csee.usf.edu/Mammography/Database.html. We wrote a routine that allows us to choose
regions of interest within these mammograms (512x512 pixels). Each case contained a cancerous masses

and their features are detailed in the following table:

Cases Properties
02,04,05,06,08,14,17, Type: cancer
18,21,25,26,27,28,29,30 Density: 4

Lesion type: mass
Mass options: Irregular and lobular

The returned results are trees that correspond to the best basis. For practical visualization and practicality,
these results are displayed in terms of 2D trees that are computed as if the images were not down-sampled.

Low-high Low- low
hilh hlll
High-high
hihh hihl

Figure 19. Display format of filtered coefficients using a wavelet packet expansion.

All processed images were 512x512 matrix size and the computation was time-consuming in terms of
processing. We therefore decide to limit our expansion to a depth of 4, which corresponds to a scale 2°=32.
We also used the filters shown in Figure 20 below for computation.
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___ abs(H)*+abs(G)?

1 S| 1
100 120 140

Figure 20. Selected filters.
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Discussion

Influence of the spline parameter

For o,,<0,, the bandwidth of Hy, is larger than the bandwidth of H, (please see Figure 3). The frequency
resolution is therefore less for Hy, than for Hgy, but its spatial resolution is better as observed visually in
Figure 8.

We also note some shifting effects perhaps due to using a non-zero phase filter - the position of the mass is
changing for higher values of « (as seen for ¢>3 in Figure 9).

The use of fractional splines is well justified when examining Figure 9 - one can note the contrast
improvement between the mass and the background, leading to a simple detection task of the mass.

For different scales and ¢, it is interesting to see different details. For instance, for the image shown in
Figure 14, the couple (scale=4, a=-0.1) seems to extract the most visual information for the mass whereas
the couple (scale=2, 0=-0.5) gives a poor result in terms of detection.

A useful range of o concerning the images seems to be within the interval [-0.4,1]. And among these
adjustable values of @, it would be interesting to be able to choose automatically the best one that gives
high contrast between the mass and the background tissues of the breast. We did not observe a single
couple (scale,) for all our sample cases. However we identified some significant trends. We see in Figures
8 through 18 that making the value o vary within the right interval is very interesting since it allows us to
see details present within the mass.
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For higher values for a we observed that the details and the approximations did not result in a superior
representation of the mass shown in Figure 10. Beyond these values the results are not interesting in terms
of detection since the corresponding coefficients emphasized the texture within the mass.

Indeed, with a continuous analysis framework, which would allow decomposition on voices between
scales, we may obtain a richer parameter space to identify the best basis for mass detection. We discuss the
application of a continuous transform at the end of this section.

In the search for the best basis, let us first show the link between the criterion metric and detection goal.
The selected coefficients within a best basis minimize the entropy of the image. However, in our case it is a
these same coefficients that mostly represent the presence of a mass. Indeed, the wavelet based on the
fractional splines simplifies the mass detection problem when a good choice of o is made. The minimum
entropy means the maximum amount of information is contain within a minimum number of coefficients.
The coefficients returned by identifying a best basis represent this information. As mention in our previous
report, mammograms are largely low frequency images. Thus entropy is linked to the shape of a mass since
minimizing the entropy leads to optimal correlation between basis coefficients and the mass signal (as
shown in our previous year’s report). To demonstrate this point, we show in Figure 21 that the entropy is
lower for a signal with a mass than for an image containing high-frequency features.

Entropy=-6.6008e+009 Entropy=-9.99226+008

Figure 21. Samples images of different entropy.

We performed experiments on three different values of the o parameter in fractional spline wavelets. The
aim here was not to perform the transform for every case but to see the similarities and differences in the
selected o’s, and to obtain a range for computing best bases. In the next phase of the project, these bases
will lead to a classification scheme for masses. At this point, we have convinced ourselves by judging the
basis in terms of a visualization by reconstructing the mass from its best basis.

We observe that the expansion is often refined in the top-right quadrant, which corresponds to a first
decomposition of low frequency information. In addition, we note that for higher o values, more nodes
were expanded. Thus we needed to expand within coarser scales to minimize entropy.
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Work in progress: A Continuous Wavelet transform

During this past study of the fractional B-splines, it became clear that it would also have been useful to be
able to perform a continuous transform with these functions. This has already been done in the case of
classical B-spline [7]. However, we encountered problems in applying a similar scheme as in [7] in the case
of fractional parameter. More specifically, we need to consider how can we apply the formula (0.14) in the
case n, non-integer:

ur (k)=;1n;-\u2, .l (k)

(m +1‘), times

where {u;’f (k )}is the sequence associated to the wavelet spline functions.

It is more computationally practical to work in Fourier domain. Thus, our design approach to compute the
transform for integer scales is in Fourier. We have written an m-scale relation,

O(x/m)=Jm Y h,, (K)®(x—k)

keZ
and we can compute
m—1 a+l m-1 a+l
0 Z e—jka) 20+l jo 2 e—jka)
ﬁ (ma)) =] k=0 =H (ejw) = A¢ (e ) k=0
B (w) m am A;““(ej'"“’) m

Now that we have the filter H, we would like to obtain the filter G that corresponds to the orthogonal
wavelet filter. Our approach to this problem is illustrated in Figure 22 where h; and g, denote the new
filters.
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Figure 22, Filter bank for implementing a fractional B-spline wavelet expansion via a 2D CWT.

3. KEY RESEARH ACCOMPLISHMENTS

(1) During this study we first evaluated exiting wavelet functions that best matched the smoothness of a
mass represented within a course level of an expansion. We then implemented under the Matlab
programming environment an algorithm of the Continuous Discrete fractional spline wavelet transform in
two dimensions. The algorithm was implemented without down sampling, using the “a trou Algorithm”
algorithm to provide redundancy and translation invariance.

(2) We modified existing functions within the Wavelab library in order to adapt them to the computation of
a wavelet packet representation and studied best basis search strategies using the fractional spline wavelet
transform. We have also developed in interactive a tool for processing selected regions of interest.

(3) We ported this algorithm using the Matlab C++ compiler to generate machine code that will be

integrated into our PC based Mammography Computer Aided Diagnosis (CAD) workstation for real-time
interactive screening of mammography cases as described in the Statement of Work for the third year.
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4. REPORTABLE OUTCOMES

The exciting results of this study will be presented at the 23rd Annual International Conference of the IEEE
Engineering in Medicine and Biology Society on October 25, 2001, in a paper entitled

“DETECTION OF MASSES IN MAMMOGRAPHY THROUGHREDUNDANT EXPANSIONS OF
SCALE,” V. Laffont, F. Durupt, M. A. Birgen, S. Bauduin, and A. F. Laine.

5. CONCLUSIONS

This phase of our study showed that fractional splines functions are a powerful tool for the representation
of masses in mammograms and are well matched to the mass detection problem. The preliminary results
presented in this report are promising but additional development is needed during Task 3. We showed that
by using a continuous-varying parameter for order, that continuous analysis outperforms standard dyadic
expansions. We showed that accurate approximations of mass shapes could be obtained through over
complete expansions of a fractional spline wavelet transform. In the context of addressing the problem of
finding the best scale (as mentioned in last year’s annual report) the continuous transform implementation
using wavelet packet theory appears to be a very efficient method in finding the best scale. Thus,
reconstruction after thresholding of coefficients within the best basis will simplify the detection task.

The next phase of this project will focus on completing Tasks 2 and 3. We have recently taken steps to

incorporate the fractional B-spline algorithm into our CAD workstation to detect masses using these
representations. We will describe the performance of this approach in our next report.
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Matlab files

Bspline directory

‘function w=CDWT2Dfrac (alpha,type,scale,im)

%

% CWT2Dfracwds -- 2D Continuous Discrete Wavelet Transform
% using Fractional B-Splines

% Usage

% w=CWT2Dfracwds (alpha, type, scale, im)

% Inputs

% alpha spline parameter alpha>-0.5

% type see FFTfractsplinefilters

% scale scale at which the transform will be computed
% im image 2D

% Outputs

% " coefficients of the transform

%

%

% See Also:

% FFTfractsplinefilters, simu_alpha_scale

S=size(im) ;
n=s(1);
nc=s(2);

if n~=nc
disp ('ERROR : image must be square!’)
break
end
Jl=log2(n);
J2=ceil(Jl);
if Jg1~=J2
disp(’ERROR : the size of the input image must be a power of two!’)
break
end

imfft=fft2 (im) ;
m=n;

w=[1;

f=[1:m];

q=1;

ag=imfft;

for k=l:scale

[H1,H2]=FFTfractsplinefilters(m, alpha, type,q);
G=H1(1, :);

G=1/sqgrt (2).*G;

H=H1(2,:);

H=1/sqrt (2) . *H;
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$computation on the rows

for i=1:m
%low-pass filtering
agl(i,:)=ag(i,:).*G;
ghigh-pass filtering
ahl(i,:)=ag(i,:).*H;

end

%computation on the columns

for j=1:m
a(:,jy=agl(:,3J).*G.";
di(:,j)=agl(:,3j).*H.";
d2(:,j)=ahl(:,3).*G.";
d3(:,j)=ahl(:,3j).*H.";

end

wl=ifft2(dl);

w2=ifft2(d2);

w3=ifft2(d3);

wl=wl+min (min(wl));

w2=w2+min (min(w2)) ;

w3=w3+min (min (w3));

w={wl w2 w3 w];
ag=a;

g=q*2;
end

approx=ifft2(a);
approx=approx+min (min (approx)) ;

w=([w approx]);
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[FFTanalysisfilters, FFTsynthesisfilters]=FFTfractsplinefilters (M, alpha,
type, q)

% FFTFRACSPLINEFILTERS Filters for the various orthogonal fractional

% spline wavelet transforms (orthonormal or semi-orthonormal).

Q

o

[FFTanalysisfilters, FFTsynthesisfilters]=FFTfractsplinefilters (M,
alpha, type)

~ o0 of

% Computation of the frequency response of the low- and high-pass
% filters that generate the orthonormal or semi-orthonormal (B-
spline
% or dual) fractional splines of degree alpha, and of type '+’
(causal),
% '-' (anticausal) or ‘*’ (symmetric).
%
% Input:
% M : size of the input signal = length of FFTfilters = 2”N
% alpha>-0.5 : degree of the fractional splines
% type : type of B-splines
% = ‘+ortho’ (causal orthonormal, default), ’-ortho’
(anticausal
% orthonormal) or ’'*ortho’ (symmetric orthonormal) ;
% = ‘+bspline’ (causal B-spline), ‘-bspline’ (anticausal
B-spline) or '*bspline’ (symmetric B-spline).
= ’+dual’ (causal dual), ‘-dual’ (anticausal dual) or
*dual’
% (symmetric dual). The last option is the flipped version of
the
% B-spline one.
% q : relative to the scale: the filters change from a scale to the
other
% Output:
% FFTanalysisfilters = [lowpassfilter;highpassfilter] : FFT
filter arrays
% FFTsynthesisfilters = [lowpassfilter;highpassfilter] :  FFT
filter arrays
%
% See also FFTWAVELETANALYSIS, FFTWAVELETSYNTHESIS.
% Uses FRACTSPLINEAUTOCORR
%
% Author: Thierry Blu, October 1999
% Biomedical Imaging Group, EPFL, Lausanne, Switzerland.
% This software is downloadable at http://bigwww.epfl.ch/
%
% References:
% [1] M. Unser and T. Blu, "Fractional splines and wavelets,"
% SIAM Review, Vol. 42, No. 1, pp. 43--67, January 2000.
% [2] M. Unser and T. Blu, "Construction of fractional spline
wavelet bases,"
% Proc. SPIE, Wavelet Applications in Signal and Image Processing
VII,
% Denver, CO, USA, 19-23 July, 1999, vol. 3813, pp. 422-431.
% [3] T. Blu and M. Unser, "The fractional spline wavelet
transform: definition and
% implementation, " Proc. IEEE International Conference on

Acoustics, Speech, and
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% Signal Processing (ICASSP’2000), Istanbul, Turkey, 5-9 June 2000,
vol. I, pp. 512-515

if alpha<=-0.5
disp(’The autocorrelation of the fractional splines exists only
)
disp(’'for degrees strictly larger than -0.5!")
FFTanalysisfilters=[];
FFTsynthesisfilters=[];

return
end
if M~=2"round(log(M)/log(2))
disp(’ ’)
disp(’The size of the FFT must be a power of two!’)
disp(’ ')
FFTanalysisfilters=[];
FFTsynthesisfilters=[];
return
end

nu=0:1/M: (1-1/M) ;

if nargin<3
type='+ortho’;

end
if length(type)<=1

error ([’’’ type '’’’ ' is an unknown filter type!’])
end
L e R R R R R R R T R o ]
EEELLVLETLILLILILINEWSILL25%2223%3%%3%%
BT LILTLILLLLILLLLB232393%%3%%

A=fractsplineautocorr (alpha,nu*q) ;
A2=fractsplineautocorr (alpha,nu* (2*qg));
$A2=[A A];"
$A2=A2(1:2:1length(A2)); % A2(z) = A(z"2)
5LV B233%%
nu=nu*qg; $$5EESELLINEWI T332 %%%%3%%%
BB 5%%%%
if type(2)=='0’|type(2)=='0’
% orthonormal spline filters
if type(l)=='*"
lowa=sqrt(2) *abs( (l+exp (-
2*i*pi*nu))/2).” (alpha+l) .*sqrt (A./A2);
else
if type(l)=='+"'
lowa=sqrt(2) * ((l+exp (-
2*i*pi*nu))/2)."(alpha+l).*sqgrt(A./A2);

else
if type(l)=='-"
lowa=sqrt(2)* ((l+exp(2*i*pi*nu))/2) . (alpha+l) .*sqgrt(A./A2);
else
error ([’’’ type(l) '’’’ ’ 1ig an unknown filter
prefix!’])
end

end
end
$higha=exp(-2*i*pi*nu).*lowa;
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$higha=conj ([higha (M/2+(1:M/2)) higha(1:M/2)1]);

igha=exp(-2*i*pi*nu).*lowa;
higha=conj ([higha (M/ (2*qg)+(1:M-M/(2*q))) higha(1:M/(2*q))1):;

3355335222555 B LB L VIV %%%%%
F2L5%%%%%
lows=lowa;
highs=higha;
FFTanalysisfilters=[lowa;higha];
FFTsynthesisfilters=[lows;highs];

else
% semi-orthonormal spline filters
if type(l)=='*’
lowa=gqrt (2) *abs ({l+exp(-2*i*pi*nu))/2)." (alpha+l);
else
if type(l)=='+"
lowa=sqrt(2) *((l+exp(-2*i*pi*nu))/2)." (alpha+l);
else
if type(l)=='-'
lowa=sqrt(2) * ((l+exp(2*i*pi*nu))/2)." (alpha+l);
else
error([’'’’’ type '’’’ ' is an unknown filter
type!’1)
end
end
end
higha=exp(-2*i*pi*nu).*lowa.*A;
higha=conj ([higha (M/2+(1:M/2)) higha(1:M/2)1);
lows=lowa.*A./A2;
highs=higha./ (A2.*[A(M/2+(1:M/2)) A(1:M/2)1);
if type(2)=='4’'|type(2)=='D’
% dual spline wavelets
FFTanalysisfilters=[lowa;highal;
FFTsynthesisfilters=[lows;highs];
else
% B-spline wavelets
if type(2)=='b’|type(2)=='B’
FFTsynthesisfilters=[lowa;highal;
FFTanalysisfilters=[lows;highs];
else
error(['’''’ type ‘'’ ' is an unknown filter type!’])
end
end
end
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‘function A=fractsplineautocorr(alpha,nu)

% FRACTSPLINEAUTOCORR Frequency domain computation of fractional spline
% autocorrelation. A=fractsplineautocorr (alpha,nu) computes the

% frequency response of the autocorrelation filter
A(exp(2*i*Pi*nu))

% of a fractional spline of degree alpha. It uses an acceleration

% technique to improve the convergence of the infinite sum by 4

% orders. '

%

% See also FFTSPLINEFILTERS

%

% Author: Thierry Blu, October 1999

% Biomedical Imaging Group, EPFL, Lausanne, Switzerland.

% This software is downloadable at http://bigwww.epfl.ch/

%

% References:

% [1] M. Unser and T. Blu, "Fractional splines and wavelets,"

% SIAM Review, Vol. 42, No. 1, pp. 43--67, January 2000.

% [2] M. Unser and T. Blu, "Construction of £fractional spline
wavelet bases,"

% Proc. SPIE, Wavelet Applications in Signal and Image Processing
VII,

% Denver, CO, USA, 19-23 July, 1999, vol. 3813, pp. 422-431.

% [3 T. Blu and M. Unser, "The fractional spline wavelet
transform: definition and

% implementation, " Proc. IEEE International Conference on
Acoustics, Speech, and

% Signal Processing (ICASSP’2000), Istanbul, Turkey, 5-9 June 2000,

vol. I, pp. 512-515

N=100; %  number of terms of the summation for
computing
% the autocorrelation frequency response

if alpha<=-0.5

disp(’'The autocorrelation of the fractional splines exists only
")

disp(’'for degrees strictly larger than -0.5!')

A=[];

return
end

S=zeros (1, length(nui)) ;
err=[1;
err0=[];
for n=-N:N
S=S+abs (sinc (nu+n)) .” (2*alpha+2) ;
end
U=2/(2*alpha+l) /N~ (2*alpha+l) ;
U=U-1/N"(2*alpha+2);
U=U+ (alpha+l)* (1/3+2*nu. *nu) /N" (2*alpha+3) ;
U=U- (alpha+l)* (2*alpha+3) *nu. *nu/N* (2*alpha+4) ;
U=U.*abs (sin(pi*nu) /pi) .” (2*alpha+2);
A=5+U;
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[ ¥

\function A=fractsplineautocorr(alpha,nu)

% FRACTSPLINEAUTOCORR Frequency domain computation of fractional spline
% autocorrelation. A=fractsplineautocorr(alpha,nu) computes the

% frequency response of the autocorrelation filter
A(exp(2*i*Pi*nu))

% of a fractional spline of degree alpha. It uses an acceleration

% technique to improve the convergence of the infinite sum by 4

% orders.

%

% See also FFTSPLINEFILTERS

%

% Author: Thierry Blu, October 1999

% Biomedical Imaging Group, EPFL, Lausanne, Switzerland.

% This software is downloadable at http://bigwww.epfl.ch/

%

% References:

% [l] M. Unser and T. Blu, "Fractional splines and wavelets,"

% SIAM Review, Vol. 42, No. 1, pp. 43--67, January 2000.

% [2] M. Unser and T. Blu, "Construction of fractional spline
wavelet bases,"

% Proc. SPIE, Wavelet Applications in Signal and Image Processing
VII, )

% Denver, CO, USA, 19-23 July, 1999, vol. 3813, pp. 422-431.

% [3] T. Blu and M. Unser, "The fractional spline wavelet
transform: definition and

% implementation, " Proc. IEEE International Conference on
Acoustics, Speech, and

% Signal Processing (ICASSP’2000), Istanbul, Turkey, 5-9 June 2000,
vol. I, pp. 512-515 .

N=100; % number of terms of the summation for
computing

% the autocorrelation frequency response

if alpha<=-0.5

disp(’The autocorrelation of the fractional splines exists only
)

disp(’'for degrees strictly larger than -0.5!")

A=[];

return
end

S=zeros (1, length(nu));
err=[1;
err0=[1];
for n=-N:N

S=S+abs (sinc (nu+n)) .” (2*alpha+2) ;
end
U=2/(2*alpha+l) /N* (2*alpha+l) ;
U=U-1/N*(2*alpha+2);
U=U+(alpha+l) * (1/3+2*nu. *nu) /N" (2*alpha+3) ;
U=U- (alpha+1l)* (2*alpha+3) *nu. *nu/N" (2*alpha+4) ;
U=U.*abs (sin(pi*nu)/pi) . (2*alpha+2) ;
A=5+U;
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sb_Plot2dPartition(bb,ax,’'y’)

Best basis directory

‘function [bb,value]=test_best (im,MaxDeep,alpha)

% test_best -- main program for best basis reasearch

% Usage

% [bb,value] = test_best(im,MaxDeep, alpha)

% Inputs

% im image 2D

% MaxDeep maximum depth of tree-search

% alpha spline parameter

% Outputs

% bb basis-quadtree of best basis

% value value of components of best basis

%

%

%

% See Also

% sb_Calc2dStatTree, sb_Best2dBasis, sb_coef_basis, sb_Plot2dPartition
name_dir=[’'output_alpha’,num2str(alpha,3), '_deep’,num2str (MaxDeep,3)];

mkdir (name_dir) ;
cd (name_dir)

im=££t2 (im) ;

[stats] = sb_Calc2dStatTree(im,MaxDeep,alpha, 'Entropy’,0.2);
[bb valuel = sb_Best2dBasis(stats,MaxDeep) ;
bb(l)=1;

bb=sb_coef_basis (MaxDeep, bb) ;
save best_basis.mat bb
bbl=£find(bb) ;

disp([’'decomposed nodes = ’,num2str (length(bbl))l)

cd .

figure

title([’alpha= ‘,num2str(alpha,3),’ MaxDeep= ’,num2str (MaxDeep,3)])

ax=axis;hold on
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function [SQTree] = sb_Calc2dStatTree(img,D,alpha,ent,EntPar)%TFPar,

% sb_Calc2dStatTree -- Put Wavelet/ Statistics into Quad Tree

% Usage

% SQTree = Calc2dStatTree(img,D,alpha,ent[,EntPar])

% Inputs

% img 2-d image, n by n, n dyadic

% D maximum depth of splitting

% alpha spline parameter

% ent type of entropy to record in tree: options are

$ ‘Entropy’ -- Coifman-Wickerhauser ==> We use this one
% 'Log’ -- sum log(abs(th_1i))

% "17p!’ -- sum |th_i|?p, 0 < p < 2, p = EntPar
% ‘N(eps)’ -- #>= eps, eps = EntPar

% '‘Risgk’ ~-- sum min(th_i”"2,eps”2), eps = EntPar
% ’ Sum’ -- sum th_i

% 'SURE’ -- SURE(Thresholding), thresh = EntPar
% EntPar extra parameter, depends on type of entropy

% Outputs

% sgtree qguad tree filled entropy numbers.

% SQTree(gnode(d, bx,by)) contains entropy of

quadlet (d,bx, by, n)

Description
A packet table is indexed by depth, block within depth, and
coefficient within block. 24 images require four
splits per parent block, we prefers to store the
entropy measure for the coefficients in a particular block
and the coefficients themselves. sb_Calc2dStatTree
creates this statistics tree for the entropy measure chosen
by the user.
1! the stored coefficients are in the Fourier domain !!!
See Also
sb_Best2dBasis, sb_Plot2dBasisTree

o0 of d° O° d° P I° OP O° J° O o of

[nl,n2]=size(img) ;

boxcent = 1;

SQTree = zeros(l, 2* (47D));
name=[’'coef_0_0_0.dat’};

save_volume (img,name, ‘float32’);
if nargin == 4, EntPar = []; end

for deep = 0:D,

[amf, FFTsynthesisfilters]=FFTfractsplinefilters(nl,alpha, '+ortho’, 2" (de
ep)):;
gnf=1/sqgrt(2) . *qgmf;
for bx=0: (boxcnt-1),
for by=0: (boxcnt-1),

name=['coef_’',num2str (deep), '_’,num2str(bx),’_’,num2str(by),’.dat’];
A=read_volume (name, [n1 n2 1 1], 'float32’');

object=ifft2(Aa);
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ss = norm(norm(object)):;
object = object ./(ss);
SQTree {(gqnode (deep, [bxby])) =

sb_CalcEntropy {(object, 'Entropy’,EntPar) ;

% We divide at each scale the enropy by 4 in order to

ensure the normalization of the entropy

SQTree (gnode (deep, [bx byl)) = SQTree(gnode (deep, [bx

byl)) /4" (deep) ;

disp([’d bx by =

', num2str (deep) ,num2str (bx) ,num2str (by) 1) ;

if deep < D, % prepare for finer scales
[gl,q2,93,qg4] = sb_DownQuad(A,gmf) ;

namel=["coef_’,num2str (deep+l), '_’,num2str(2*bx),’'_’,num2str(2*by),’'.da
t'1;

name2=['coef_’,num2str(deep+l), '_’,num2str(2*bx+1),’'_’,num2str(2*by),’.
dat’];
name3=[’coef_’,num2str(deep+l), '_’,num2str (2*bx), '_’,num2str (2*by+1),’.
dat’];
named=['coef_’,num2str (deep+l), '_’',num2str (2*bx+1), '’ ,num2stxr (2*by+1),
r.dat’];

save_volume (gl,namel, 'float32’);
save_volume (g2, name2, ‘float32’);
save_volume (g3,name3, 'float32’);
save_volume (g4, named, ‘float32’);
clear gl g2 g3 g4
end
end
end
boxcnt = boxent*2;

end .

40



s

function Ent = sb_CalcEntropy(object,Entropy,par)

% CalcEntropy -- Calculate entropy number of array

% Usage

% Ent = CalcEntropy(object,ent[,par])

% Inputs

% object 1-d or 2-d object

£ ent type of entropy to use: options are

% 'Entropy’ -- Coifman-Wickerhauser

% "Log -- sum log(|th_i])

% "14p’ -- sum |th_i|”p, 0 < p < 2, p = par
% 'N{eps)' -- #>= eps, eps = par

% ‘Risk’ -- sum min(th_i"2,eps”™2), eps=par

% fSum’ -- sum th_i

% 'SURE’ -~ SURE(Thresholding), thresh = par
% par extra parameter, depends on type of entropy

% Outputs

% Ent Entropy of object

%

% Description

% It is traditional to normalize the object to norm 1 before
% calling this routine. This routine does NO pre-scaling.
%

% See Also

% sb_Calc2dStatTree

%

if strcmp (Entropy, 'Entropy’) .,
p = (object(:) )."2;
Ent = - sum(sum(p .* log(p)})):
elseif strcmp (Entropy, 'Log’)
p = abs(object(:) ):
Ent = sum(log(eps+p));
elseif strcmp(Entropy, '17p’),
$ par = p = exponent
p = abs(object(:) );
Ent = sum(p ."par);
elseif strcmp (Entropy, 'N(eps) '),
% par = eps
p = abs(object(:));
Ent = sum( p > par );
elseif strcmp (Entropy, 'Risk’),
p = object(:)."2;
Ent = sum(min(p,par”2)):;
elseif strcmp(Entropy, 'Sum’),
p = object(:);
Ent = sum(p);
elseif strcmp(Entropy, 'SURE’),
tt = par*2; % par = threshold
dim = length(object(:));
p = object(:)."2;
ngt = sum( p > tt):;
nlt = dim - ngt;
slt sum( p .* ( p <= tt ));
Ent dim - 2*nlt + tt*ngt + slt;

else
disp(’in CalcEntropy: unknown Entropy request’)
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fprintf (' Request=<<%s>>\n’', Entropy)
disp(’I only know how to do:’)
disp(’ Entropy, Log, 1”p, N(eps), Risk, SURE ')
end
clear object

ifunction bb=sb_coef_basis(D,basis) =

% sb_coef_basis -- return the best basis tree

% Usage

% bb=sb_coef_basis(D,basis)

% Inputs

% basis best basis reurned by sb_Best2DBasis
% D Maximum depth of decomposition

% Outputs

% bb best basis

%

% Description

% sb_Best2dBasis returns a tree with 1 and 0

% but it can have 1 on a depth and only 0 on

% the depth before...

% the coefficients that are non terminal nodes
% are deleted

b=1[1];

for deep = 0:D-1,
for bx=0:(2"deep-1),
for by=0:(2"deep-1),

if (basis (gqnode (deep, [bx,byl)) == 0) , %
nonterminal node
basis (gqnode (deep+1, [2*bx,2*by]l)) = 0;
basis (gnode (deep+l, [2*bx+1,2*%by])) =
basis (gnode (deep+l, [2*bx, 2*by+1])) =
basis (gnode (deep+1, [2*bx+1, 2*by+11))
end

o o~

N oo

0;

end
end
end

bb=basis;
find(basis) ;
for deep = D-1:-1:0,
for bx=0: (2*deep-1),
for by=0:(2"deep-1),
if (basis{gnode (deep, [bx,byl)) == 0) , %
nonterminal node

name=['coef_’ ,num2str(deep+l),’'_’,num2str(2*bx), '
1:

', num2str (2*by), ' .dat

delete (name)

name=['coef_’,num2str(deep+l), '_’,num2str(2*bx+1l),’
at’];

f,num2str (2*by), ’.d

delete (name)
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name:[’coef_’,num2str(deep+l),'_’,numZStr(Z*bx),’_’,num2str(2*by+l),’.d
at’];
delete (name)

name=[’coef_',num2str(deep+1),’_’,num2str(2*bx+1),'_’,num2str(2*by+l),’
.dat’];
delete (name)
else
if (basis(gnode (deep+l, [2*bx,2*by]l)) == 1)
name=[’coef_',num2str(deep+l),’_’,num2str(2*bx),’_’,num25tr(2*by),’.dat
"1
delete (name)
end
if (basis(gnode (deep+l, [2*bx+1,2*by])) == 1)
name=['coef_ ', num2str(deep+l),’_’,num2str (2*bx+1),’_’,num2str(2*by), ’.d
at’];
delete (name)
end
if (basis (gnode(deep+1, [2*bx,2*by+1])) == 1)
namez[’coef_’,num2str(deep+l),’_’,num2str(2*bx),'_’,num25tr(2*by+1),’.d
at’];
delete (name)
end
if (basis(qgnode(deep+l, [2*bx+1,2*by+1])) == 1)
name=[’coef_’,num2str(deep+1),'_’,num25tr(2*bx+l),’_’,num25tr(2*by+1),’
.dat’];
delete (name)
end
end
end
end
end

delete('coef_0_0_0.dat’)
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